Self-gravitational Magnetohydrodynamics with Adaptive Mesh Refinement for Protostellar Collapse
نویسنده
چکیده
A new numerical code, called SFUMATO, for solving self-gravitational magnetohydrodynamics (MHD) problems using adaptive mesh refinement (AMR) is presented. A block-structured grid is adopted as the grid of the AMR hierarchy. The total variation diminishing (TVD) cell-centered scheme is adopted as the MHD solver, with hyperbolic cleaning of divergence error of the magnetic field also implemented. The self-gravity is solved by a multigrid method composed of (1) full multigrid (FMG)-cycle on the AMR hierarchical grids, (2) V-cycle on these grids, and (3) FMG-cycle on the base grid. The multigrid method exhibits spatial second-order accuracy, fast convergence, and scalability. The numerical fluxes are conserved by using a refluxing procedure in both the MHD solver and the multigrid method. The several tests are performed indicating that the solutions are consistent with previously published results.
منابع مشابه
Gravitational Collapse and Fragmentation in Molecular Clouds with Adaptive Mesh Refinement Hydrodynamics
We describe a powerful methodology for numerical solution of 3-D self-gravitational hydrodynamics problems with extremely high resolution. Our method utilizes the technique of local adaptive mesh refinement (AMR), employing multiple grids at multiple levels of resolution. These grids are automatically and dynamically added and removed as necessary to maintain adequate resolution. This technolog...
متن کاملThe Long Term: Six-dimensional Core-collapse Supernova Models
The computational difficulty of six-dimensional neutrino radiation hydrodynamics has spawned a variety of approximations, provoking a long history of uncertainty in the core-collapse supernova explosion mechanism. Under the auspices of the Terascale Supernova Initiative, we are honoring the physical complexity of supernovae by meeting the computational challenge head-on, undertaking the develop...
متن کاملRecent Advances in the Collapse and Fragmentation of Turbulent Molecular Cloud Cores
Observations of stars in the vicinity of the Sun show that binary systems are prevalent and appear to be a general outcome of the star-formation process. One of the major goals of this research is to understand the nature of the formation of binary and multiple stellar systems with typical low-mass stars (∼ 0.2 to 3 M ) and the physical properties of these systems. Basic questions concerning th...
متن کاملRadiation-hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores
We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment, and whether they form a small or large number of protostars. Our simulations use the Orion adaptive mesh refinement code to follow the collapse from ∼ 0.1 pc scales to ∼ 10 AU scales, for durations that cover the main fragmentation phase, using thre...
متن کاملBrown Dwarfs from Turbulent Fragmentation
The origin of brown dwarfs (BDs) is an important component of the theory of star formation, because BDs are approximately as numerous as solar mass stars. It has been suggested that BDs originate from the gravitational fragmentation of protostellar disks, a very different mechanism from the formation of hydrogen burning stars. We propose that BDs are instead formed by the process of turbulent f...
متن کامل